If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+32x-14=0
a = 2; b = 32; c = -14;
Δ = b2-4ac
Δ = 322-4·2·(-14)
Δ = 1136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1136}=\sqrt{16*71}=\sqrt{16}*\sqrt{71}=4\sqrt{71}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{71}}{2*2}=\frac{-32-4\sqrt{71}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{71}}{2*2}=\frac{-32+4\sqrt{71}}{4} $
| 0.45=-1.8+0.75x | | x^2+4x-14=9 | | 5(t-4)=30 | | 30=5x+20 | | G(x)=4x^2-484 | | 45x+1=15x | | 4x-12=x+24 | | 6x=4(x+23) | | -8.8=x/3-1.3 | | 2^(12-3x)=64 | | 5x-23+3x-15=90 | | 34.03=7g+3.79 | | -4a+5-2a=44 | | 7/9x=3x/14 | | X=3y=51 | | 2x+3(x+2)=-4 | | 2-6x=-9x+3 | | 13.88+0.07(x+3)=14.63-0.09x | | -9y+10y−-4=8 | | -3+z÷7=-5 | | -(j-6)=0 | | 7/6=x/6 | | -(j-6=0 | | 2x(x+1)=7×-2 | | 9x+15=11x+5 | | 3(4x-5)+22x–4x=43 | | 5y+9=8y-6+8y | | 2(k+5)=18 | | x–6.6=15.7 | | k-3.2=21 | | q^2-(4*1/2)=119 | | -4 = -16m |